Discontinuous percolation transitions in epidemic processes, surface depinning in random media, and Hamiltonian random graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Percolation and Random Graphs

In this section, we define percolation and random graph models, and survey the features of these models. 1.

متن کامل

Clique percolation in random graphs

As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l<k vertices. In this paper we develop a theoretical approach to study clique percolation in Erdős-Rényi graphs, which gives not only the exact solutions of the critical point, but also the corresponding order para...

متن کامل

Bootstrap Percolation in Directed Inhomogeneous Random Graphs

Bootstrap percolation is a process that is used to model the spread of an infection on a given graph. In the model considered here each vertex is equipped with an individual threshold. As soon as the number of infected neighbors exceeds that threshold, the vertex gets infected as well and remains so forever. We perform a thorough analysis of bootstrap percolation on a novel model of directed an...

متن کامل

Two Types of Discontinuous Percolation Transitions in Cluster Merging Processes

Percolation is a paradigmatic model in disordered systems and has been applied to various natural phenomena. The percolation transition is known as one of the most robust continuous transitions. However, recent extensive studies have revealed that a few models exhibit a discontinuous percolation transition (DPT) in cluster merging processes. Unlike the case of continuous transitions, understand...

متن کامل

A solvable model of interface depinning in random media

We study the mean-field version of a model proposed by Leschhorn to describe the depinning transition of interfaces in random media. We show that evolution equations for the distribution of forces felt by the interface sites can be written directly for an infinite system. For a flat distribution of random local forces the value of the depinning threshold can be obtained exactly. In the case of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2012

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.86.011128